This code snippet involves loading an image, making a prediction using a machine learning model, and visualizing the original image, with unknown implementations of the ef
function and label
list.
image = 'images/train/fear/2.jpg'
print("original image is of fear")
img = ef(image)
pred = model.predict(img)
pred_label = label[pred.argmax()]
print("model prediction is ",pred_label)
plt.imshow(img.reshape(48,48),cmap='gray')
import os
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.keras.preprocessing.image import load_img
def load_image(image_path):
"""
Load an image from the given path.
Args:
image_path (str): Path to the image file.
Returns:
PIL Image: Loaded image.
"""
return load_img(image_path, target_size=(48, 48))
def preprocess_image(image):
"""
Resize and convert image to grayscale.
Args:
image (PIL Image): Image to preprocess.
Returns:
numpy array: Preprocessed image.
"""
return np.array(image)[:, :, 0]
def plot_image(image):
"""
Plot the given image.
Args:
image (numpy array): Image to plot.
"""
plt.imshow(image, cmap='gray')
plt.show()
def main():
# Load image
image_path = 'images/train/fear/2.jpg'
original_label = "fear"
print(f"Original image is of {original_label}")
# Load and preprocess image
image = load_image(image_path)
img = preprocess_image(image)
# Make predictions
model = tf.keras.models.load_model('path/to/model.h5')
pred = model.predict(img)
pred_label = 'anger' if pred.argmax() == 0 else 'fear' # Replace with actual label
print(f"Model prediction is {pred_label}")
# Plot image
plot_image(img)
if __name__ == "__main__":
main()
image
: a string variable holding the path to an image file.img
: the result of calling the ef
function with image
as an argument.model.predict(img)
: uses a machine learning model (model
) to make a prediction based on the input image (img
).pred_label
: the predicted label is obtained by indexing the label
list with the index of the maximum value in the prediction (pred.argmax()
).plt.imshow(img.reshape(48,48),cmap='gray')
: displays the original image (img
) in a grayscale format, reshaped to a 48x48 matrix.Note: The ef
function and the label
list are not defined in this code snippet, so their implementation is unknown.