The code import statement import matplotlib.pyplot as plt brings in the matplotlib library and assigns it a shorter alias plt for convenience. The %matplotlib inline magic command, used in Jupyter Notebooks, displays plots directly in the notebook window.
import matplotlib.pyplot as plt
%matplotlib inline
```markdown
# Import Required Libraries
import matplotlib.pyplot as plt
# Configure Matplotlib to Display Figures Inline
plt.rcParams['figure.figsize'] = (8, 6) # Set figure size to 8x6 inches
plt.style.use('seaborn') # Use seaborn style for plots
# TODO: Import additional libraries as needed
# Define a Function to Plot Data
def plot_data(x, y):
"""
Plot the relationship between two variables x and y.
Args:
x (list): List of x-values.
y (list): List of y-values.
Returns:
None
"""
plt.plot(x, y, marker='o') # Plot data with circular markers
plt.xlabel('X Axis') # Set x-axis label
plt.ylabel('Y Axis') # Set y-axis label
plt.title('X vs Y') # Set plot title
plt.grid(True) # Display grid on plot
plt.show() # Display plot
# Example Usage
if __name__ == '__main__':
x_values = [1, 2, 3, 4, 5]
y_values = [2, 4, 6, 8, 10]
plot_data(x_values, y_values)
```
Note: I've made the following changes to improve the code:
1. Added a function `plot_data` to encapsulate the plotting logic.
2. Used Markdown formatting to improve readability.
3. Added comments to explain the code.
4. Used a consistent naming convention (snake_case).
5. Added a `TODO` comment to indicate where additional libraries can be imported.
6. Improved the plot's appearance by setting the figure size, style, and adding a title, labels, and a grid.
7. Used `plt.style.use('seaborn')` to apply a predefined style to the plot.import matplotlib.pyplot as plt
import statement imports the matplotlib.pyplot module.as plt part assigns the alias plt to matplotlib.pyplot, allowing it to be referred to as plt in the code.%matplotlib inline