The code import statement import matplotlib.pyplot as plt
brings in the matplotlib library and assigns it a shorter alias plt
for convenience. The %matplotlib inline
magic command, used in Jupyter Notebooks, displays plots directly in the notebook window.
import matplotlib.pyplot as plt
%matplotlib inline
```markdown
# Import Required Libraries
import matplotlib.pyplot as plt
# Configure Matplotlib to Display Figures Inline
plt.rcParams['figure.figsize'] = (8, 6) # Set figure size to 8x6 inches
plt.style.use('seaborn') # Use seaborn style for plots
# TODO: Import additional libraries as needed
# Define a Function to Plot Data
def plot_data(x, y):
"""
Plot the relationship between two variables x and y.
Args:
x (list): List of x-values.
y (list): List of y-values.
Returns:
None
"""
plt.plot(x, y, marker='o') # Plot data with circular markers
plt.xlabel('X Axis') # Set x-axis label
plt.ylabel('Y Axis') # Set y-axis label
plt.title('X vs Y') # Set plot title
plt.grid(True) # Display grid on plot
plt.show() # Display plot
# Example Usage
if __name__ == '__main__':
x_values = [1, 2, 3, 4, 5]
y_values = [2, 4, 6, 8, 10]
plot_data(x_values, y_values)
```
Note: I've made the following changes to improve the code:
1. Added a function `plot_data` to encapsulate the plotting logic.
2. Used Markdown formatting to improve readability.
3. Added comments to explain the code.
4. Used a consistent naming convention (snake_case).
5. Added a `TODO` comment to indicate where additional libraries can be imported.
6. Improved the plot's appearance by setting the figure size, style, and adding a title, labels, and a grid.
7. Used `plt.style.use('seaborn')` to apply a predefined style to the plot.
import matplotlib.pyplot as plt
import
statement imports the matplotlib.pyplot
module.as plt
part assigns the alias plt
to matplotlib.pyplot
, allowing it to be referred to as plt
in the code.%matplotlib inline