The fit function is used to train a model on given input and output data, with options to adjust batch size and number of epochs.
The fit function takes in the input data x, output data y, and additional parameters such as batch_size, epochs, and validation_data.
model.fit(x= x_train,y = y_train, batch_size = 128, epochs = 100, validation_data = (x_test,y_test)) 
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint
from tensorflow.keras.optimizers import Adam
# Compile the model with the specified optimizer and loss function
def compile_model(model):
    """Compiles the model with the Adam optimizer and sparse categorical crossentropy loss."""
    model.compile(
        optimizer=Adam(lr=1e-3),
        loss='sparse_categorical_crossentropy',
        metrics=['accuracy']
    )
    return model
# Define early stopping and model checkpoint callbacks
def get_callbacks(checkpoint_path):
    """Returns early stopping and model checkpoint callbacks."""
    early_stopping = EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True)
    model_checkpoint = ModelCheckpoint(
        filepath=checkpoint_path,
        save_best_only=True,
        monitor='val_loss',
        mode='min',
        verbose=1
    )
    return early_stopping, model_checkpoint
# Train the model
def train_model(
    model,
    x_train: tf.Tensor,
    y_train: tf.Tensor,
    x_test: tf.Tensor,
    y_test: tf.Tensor,
    batch_size: int,
    epochs: int,
    checkpoint_path: str
):
    """Trains the model on the training data and evaluates its performance on the test data."""
    # Compiles the model
    model = compile_model(model)
    
    # Define early stopping and model checkpoint callbacks
    early_stopping, model_checkpoint = get_callbacks(checkpoint_path)
    
    # Train the model
    history = model.fit(
        x_train,
        y_train,
        batch_size=batch_size,
        epochs=epochs,
        validation_data=(x_test, y_test),
        callbacks=[early_stopping, model_checkpoint]
    )
    
    return history
# Example usage
model =...  # Define your model here
history = train_model(
    model,
    x_train,
    y_train,
    x_test,
    y_test,
    batch_size=128,
    epochs=100,
    checkpoint_path='./checkpoints/model.h5'
)fitx: Input data for training.y: Output data for training.batch_size: Number of samples processed before updating the model's weights. (int)epochs: Number of times the model sees the entire dataset. (int)validation_data: Input and output data for validation. (tuple)