The fit
function is used to train a model on given input and output data, with options to adjust batch size and number of epochs.
The fit
function takes in the input data x
, output data y
, and additional parameters such as batch_size
, epochs
, and validation_data
.
model.fit(x= x_train,y = y_train, batch_size = 128, epochs = 100, validation_data = (x_test,y_test))
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint
from tensorflow.keras.optimizers import Adam
# Compile the model with the specified optimizer and loss function
def compile_model(model):
"""Compiles the model with the Adam optimizer and sparse categorical crossentropy loss."""
model.compile(
optimizer=Adam(lr=1e-3),
loss='sparse_categorical_crossentropy',
metrics=['accuracy']
)
return model
# Define early stopping and model checkpoint callbacks
def get_callbacks(checkpoint_path):
"""Returns early stopping and model checkpoint callbacks."""
early_stopping = EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True)
model_checkpoint = ModelCheckpoint(
filepath=checkpoint_path,
save_best_only=True,
monitor='val_loss',
mode='min',
verbose=1
)
return early_stopping, model_checkpoint
# Train the model
def train_model(
model,
x_train: tf.Tensor,
y_train: tf.Tensor,
x_test: tf.Tensor,
y_test: tf.Tensor,
batch_size: int,
epochs: int,
checkpoint_path: str
):
"""Trains the model on the training data and evaluates its performance on the test data."""
# Compiles the model
model = compile_model(model)
# Define early stopping and model checkpoint callbacks
early_stopping, model_checkpoint = get_callbacks(checkpoint_path)
# Train the model
history = model.fit(
x_train,
y_train,
batch_size=batch_size,
epochs=epochs,
validation_data=(x_test, y_test),
callbacks=[early_stopping, model_checkpoint]
)
return history
# Example usage
model =... # Define your model here
history = train_model(
model,
x_train,
y_train,
x_test,
y_test,
batch_size=128,
epochs=100,
checkpoint_path='./checkpoints/model.h5'
)
fit
x
: Input data for training.y
: Output data for training.batch_size
: Number of samples processed before updating the model's weights. (int)epochs
: Number of times the model sees the entire dataset. (int)validation_data
: Input and output data for validation. (tuple)