The to_categorical
function converts integer class vectors into binary class matrices, useful for classification problems. It takes integer class vectors and returns one-hot encoded matrices, where each row represents a sample and each column represents a class.
y_train = to_categorical(y_train,num_classes = 7)
y_test = to_categorical(y_test,num_classes = 7)
import numpy as np
from tensorflow.keras.utils import to_categorical
def convert_to_one_hot(y_train, y_test, num_classes):
"""
Convert class labels to one-hot encoding using Keras' to_categorical function.
Args:
y_train (np.ndarray): Training labels.
y_test (np.ndarray): Testing labels.
num_classes (int): Number of classes.
Returns:
tuple: One-hot encoded training and testing labels.
"""
y_train_one_hot = to_categorical(y_train, num_classes=num_classes)
y_test_one_hot = to_categorical(y_test, num_classes=num_classes)
return y_train_one_hot, y_test_one_hot
# Example usage
y_train = np.array([0, 1, 2, 3, 4, 5, 6])
y_test = np.array([6, 5, 4, 3, 2, 1, 0])
num_classes = 7
y_train_one_hot, y_test_one_hot = convert_to_one_hot(y_train, y_test, num_classes)
print("One-hot encoded training labels:", y_train_one_hot)
print("One-hot encoded testing labels:", y_test_one_hot)
to_categorical
The to_categorical
function is used to convert integer class vectors to binary class matrices.
y_train = to_categorical(y_train, num_classes=7)
y_test = to_categorical(y_test, num_classes=7)
y_train
and y_test
: integer class vectors to be convertednum_classes=7
: the number of classes in the classification problemThe function returns binary class matrices, where each row is a one-hot encoding of the corresponding class label. In this case, the classes are numbered from 0 to 6 (since the number of classes is 7). The resulting arrays are:
y_train
: shape=(n_samples, 7), where n_samples is the number of training samplesy_test
: shape=(n_samples, 7), where n_samples is the number of test samplesEach column represents a class, and the value at each position is either 0 or 1, indicating whether the sample belongs to that class or not.