The code imports the OuteTTS library, configures a text-to-speech model, and defines a function llmSpeech
to convert text to speech, which is then exposed to be used outside of this code module.
npm run import -- "llm voice"
import outetts
# Configure the model
model_config = outetts.HFModelConfig_v2(
model_path="OuteAI/OuteTTS-0.3-1B",
tokenizer_path="OuteAI/OuteTTS-0.3-1B"
)
globals()["interface"] = None
def llmSpeech(prompt):
if globals()["interface"] is None:
# Initialize the interface
interface = outetts.InterfaceHF(model_version="0.3", cfg=model_config)
# You can create a speaker profile for voice cloning, which is compatible across all backends.
# speaker = interface.create_speaker(audio_path="path/to/audio/file.wav")
# interface.save_speaker(speaker, "speaker.json")
# speaker = interface.load_speaker("speaker.json")
# Print available default speakers
interface.print_default_speakers()
# Load a default speaker
speaker = interface.load_default_speaker(name="en_male_1")
globals()["interface"] = interface
globals()["speaker"] = speaker
else:
interface = globals()["interface"]
speaker = globals()["speaker"]
# Generate speech
gen_cfg = outetts.GenerationConfig(
text=prompt,
temperature=0.3,
repetition_penalty=1.1,
max_length=4096,
speaker=speaker,
)
output = interface.generate(config=gen_cfg)
# Save the generated speech to a file
output.save("output.wav")
__all__ = {
"llmSpeech": llmSpeech
}
import outetts
# Define the model configuration
class ModelConfig:
"""Configuration for the OuteTTS model"""
def __init__(self, model_path, tokenizer_path):
self.model_path = model_path
self.tokenizer_path = tokenizer_path
def to_dict(self):
return {
"model_path": self.model_path,
"tokenizer_path": self.tokenizer_path
}
# Define the speaker configuration
class SpeakerConfig:
"""Configuration for the speaker"""
def __init__(self, name):
self.name = name
def to_dict(self):
return {
"name": self.name
}
# Define the interface configuration
class InterfaceConfig:
"""Configuration for the OuteTTS interface"""
def __init__(self, model_version):
self.model_version = model_version
def to_dict(self):
return {
"model_version": self.model_version
}
# Define the generation configuration
class GenerationConfig:
"""Configuration for the speech generation"""
def __init__(self, text, temperature, repetition_penalty, max_length, speaker):
self.text = text
self.temperature = temperature
self.repetition_penalty = repetition_penalty
self.max_length = max_length
self.speaker = speaker
def to_dict(self):
return {
"text": self.text,
"temperature": self.temperature,
"repetition_penalty": self.repetition_penalty,
"max_length": self.max_length,
"speaker": self.speaker
}
# Define the OuteTTS interface
class OuteTTS:
"""Implementation of the OuteTTS interface"""
def __init__(self, model_version, cfg):
self.model_version = model_version
self.cfg = cfg
self.interface = None
self.speaker = None
def initialize(self):
"""Initialize the OuteTTS interface"""
try:
import torch
import torchx
except ImportError:
print("Error: TTS and TorchX libraries are required")
return
try:
self.interface = outetts.InterfaceHF(model_version=self.model_version, cfg=self.cfg)
except Exception as e:
print(f"Error: {e}")
return
try:
# Create a speaker profile for voice cloning
# self.speaker = self.interface.create_speaker(audio_path="path/to/audio/file.wav")
# self.interface.save_speaker(speaker, "speaker.json")
# self.speaker = self.interface.load_speaker("speaker.json")
# Print available default speakers
self.interface.print_default_speakers()
# Load a default speaker
self.speaker = self.interface.load_default_speaker(name="en_male_1")
except Exception as e:
print(f"Error: {e}")
self.interface = self.interface
self.speaker = self.speaker
def generate(self, config):
"""Generate speech using the OuteTTS interface"""
try:
output = self.interface.generate(config=config)
except Exception as e:
print(f"Error: {e}")
return
return output
# Initialize the OuteTTS interface
def llmSpeech(prompt):
"""
Generate speech using the OuteTTS interface
Parameters:
- prompt (str): Text to generate speech from
Returns:
- None
"""
if not hasattr(llmSpeech, 'interface'):
llmSpeech.interface = OuteTTS(model_version="0.3", cfg=ModelConfig(model_path="OuteAI/OuteTTS-0.3-1B", tokenizer_path="OuteAI/OuteTTS-0.3-1B"))
llmSpeech.interface.initialize()
else:
llmSpeech.interface = llmSpeech.interface
# Create a speaker profile for voice cloning
# speaker = llmSpeech.interface.create_speaker(audio_path="path/to/audio/file.wav")
# llmSpeech.interface.save_speaker(speaker, "speaker.json")
# speaker = llmSpeech.interface.load_speaker("speaker.json")
# Print available default speakers
# llmSpeech.interface.print_default_speakers()
# Load a default speaker
speaker = llmSpeech.interface.speaker
# Define the generation configuration
config = GenerationConfig(
text=prompt,
temperature=0.3,
repetition_penalty=1.1,
max_length=4096,
speaker=speaker
)
# Generate speech using the OuteTTS interface
output = llmSpeech.interface.generate(config=config)
# Save the generated speech to a file
output.save("output.wav")
# Expose the llmSpeech function
__all__ = {
"llmSpeech": llmSpeech
}
import outetts
The code imports the OuteTTS library, which is a text-to-speech (TTS) model.
model_config = outetts.HFModelConfig_v2(
model_path="OuteAI/OuteTTS-0.3-1B",
tokenizer_path="OuteAI/OuteTTS-0.3-1B"
)
The code configures the model by specifying the paths to the model and tokenizer files.
llmSpeech
Functiondef llmSpeech(prompt):
The llmSpeech
function takes a prompt
parameter, which is the text to be converted into speech.
if globals()["interface"] is None:
interface = outetts.InterfaceHF(model_version="0.3", cfg=model_config)
#... (other interface initialization code)
The code checks if the interface
variable is None
. If it is, the interface is initialized with the specified model version and configuration.
# Load a default speaker
speaker = interface.load_default_speaker(name="en_male_1")
The code loads a default speaker with the name "en_male_1".
gen_cfg = outetts.GenerationConfig(
text=prompt,
temperature=0.3,
repetition_penalty=1.1,
max_length=4096,
speaker=speaker,
)
output = interface.generate(config=gen_cfg)
The code generates speech from the prompt
text using the loaded speaker and configuration.
output.save("output.wav")
The generated speech is saved to a file named "output.wav".
llmSpeech
Function__all__ = {
"llmSpeech": llmSpeech
}
The llmSpeech
function is exposed to be used outside of this code module.