The code consists of imported modules, functions, and notes for an asynchronous Python script that uses custom modules browser_use and langchain_ollama to execute a search task on the r/LocalLLaMA subreddit. The script defines two asynchronous functions: run_search() and main().
import asyncio
from browser_use import Agent
from browser_use.agent.views import AgentHistoryList
from langchain_ollama import ChatOllama
async def run_search() -> AgentHistoryList:
agent = Agent(
task="Search for a 'browser use' post on the r/LocalLLaMA subreddit and open it.",
llm=ChatOllama(
# model="qwen2.5:32b-instruct-q4_K_M",
# model="deepseek-r1:14b",
model="qwen2.5:latest",
num_ctx=32000,
),
)
result = await agent.run()
return result
async def main():
result = await run_search()
print("\n\n", result)
__all__ = {
"main": main,
"run_search": run_search
}
# Import necessary libraries
import asyncio
from browser_use import Agent
from browser_use.agent.views import AgentHistoryList
from langchain_ollama import ChatOllama
# Define constants for LLama model and context
DEFAULT_LLM_MODEL = "qwen2.5:latest"
DEFAULT_NUM_CTX = 32000
class LlamaAgent:
"""An agent using LLama to perform tasks."""
def __init__(self, model=DEFAULT_LLM_MODEL, num_ctx=DEFAULT_NUM_CTX):
"""Initialize the LLama agent.
Args:
model (str): The name of the LLama model to use. Defaults to DEFAULT_LLM_MODEL.
num_ctx (int): The number of context to use. Defaults to DEFAULT_NUM_CTX.
"""
self.agent = Agent(
task="Search for a 'browser use' post on the r/LocalLLaMA subreddit and open it.",
llm=ChatOllama(model=model, num_ctx=num_ctx),
)
async def run_search(self) -> AgentHistoryList:
"""Run the search task using the LLama agent.
Returns:
AgentHistoryList: The result of the search task.
"""
result = await self.agent.run()
return result
async def main():
"""The main entry point of the script."""
# Create a new LLama agent
agent = LlamaAgent()
# Run the search task
result = await agent.run_search()
# Print the result
print("\n\n", result)
if __name__ == "__main__":
# Run the main function
asyncio.run(main())asyncio: a built-in Python module for writing single-threaded concurrent code using coroutines, multiplexing I/O access over sockets and other resources, and implementing network clients and servers.browser_use: a custom module (not a built-in Python module) containing the Agent class and its related views.langchain_ollama: a custom module (not a built-in Python module) containing the ChatOllama class.run_search()AgentHistoryList.Agent class with a task to search for a 'browser use' post on the r/LocalLLaMA subreddit and open it.qwen2.5:latest) and a large context buffer (num_ctx=32000).run() method and returns the result.main()run_search() and prints the result.__all__ variable is set to a dictionary containing the main and run_search functions, making them available for import from other modules.asyncio module.langchain_ollama and browser_use modules are not standard Python modules and are likely custom implementations.run_search() and main(), which are exported for use in other modules.