This JavaScript code imports functions from other modules to interact with a large language model (LLM) for code summarization and caching, then iterates through a cache of cells to retrieve and store the cached data using these LLM functions.
npm run import -- "store all notebook llm functions"const {askLlamaAboutCode} = importer.import("ask llm about code")
const {askLlamaToSummerize, askLlamaToGeneralize, askLlamaToImplement} = importer.import("ask llm to summerize")
const {getExports, cacheCells} = importer.import("select code tree",
"get exports from source",
"cache notebook",
"cache all")
const { functionCache } = importer.import("cache rpc functions with llm descriptions")
const { storeLlamaFunction } = importer.import("store llama function")
async function storeAllLlamaFunctions() {
const getParameters = await importer.import("get c parameters")
const pythonParams = await importer.import("python params in antlr")
let cellCache = importer.import("cell cache").cellCache
for(let i = 0; i < cellCache.length; i++) {
let cell = cellCache[i]
//if(!cell[2].questions || !cell[2].questions[0]) continue
let code = importer.lookupCell(cell[1], cacheCells)
if(code.code.trim().length == 0 || code.filename.match('cache')) {
storeLlamaFunction(cell[1], code.mtime, [], '', '', '', '', '')
continue
}
let amazing
let summary
let shortened
let rpcFunction
let categories
let category
let fresh = false
if(typeof functionCache[cell[1]] != 'undefined') {
if(
// notebook hasn't changed
code.mtime <= functionCache[cell[1]].mtime
// don't both updating cache notebooks,
// otherwise this will run every time any notebook changes
|| code.filename.match(/cache/gi)
) {
summary = functionCache[cell[1]].description
shortened = functionCache[cell[1]].summary
rpcFunction = functionCache[cell[1]].exports
amazing = functionCache[cell[1]].amazing
}
categories = functionCache[cell[1]].categories
category = functionCache[cell[1]].categories
} else {
fresh = true
}
// needs cleanup
if(!summary || !categories || (categories + '').includes('\n')
|| summary.length < 256 || summary.match(/Find the derivative/gi)
|| shortened.match(/Find the derivative/gi)
|| categories.match(/Code analysis request/gi)) {
// TODO: this should cause the erroneous cell to show up every time and for these to be fixed next pass
summary = await askLlamaAboutCode(code.code)
shortened = await askLlamaToSummerize(summary)
categories = await askLlamaToGeneralize(summary)
fresh = true
}
if(!amazing) {
amazing = await askLlamaToImplement(code.code, code.language)
fresh = true
}
if(typeof rpcFunction == 'undefined') {
try {
if(code.language == 'javascript')
rpcFunction = getExports(code.code)
if(code.language == 'c' || code.language == 'cpp')
rpcFunction = (await getParameters(code.code)).map(p => typeof p == 'string' ? p : p[0])
if(code.language == 'python') {
const params = await pythonParams(code.code)
rpcFunction = typeof params.function != 'undefined' ? [params.function] : params.map(p => p.function)
}
fresh = true
} catch (e) {
rpcFunction = []
}
}
if(fresh) {
// TODO: insert rpc function into sqlite database to make subsequent lookups faster
storeLlamaFunction(cell[1], code.mtime, rpcFunction, summary, shortened, categories, category, amazing)
}
}
}
module.exports = {
storeAllLlamaFunctions
}
// Import necessary modules and functions
const {
askLlamaAboutCode,
askLlamaToSummarize,
askLlamaToGeneralize,
askLlamaToImplement,
getExports,
cacheCells,
functionCache,
storeLlamaFunction,
getParameters,
pythonParams,
cellCache
} = require('./importer');
// Define a function to check if a cell needs to be cached
const needsCache = (cell, code, mtime) => {
if (!code.code.trim().length || code.filename.includes('cache'))
return false;
if (typeof functionCache[cell]!== 'undefined' && code.mtime <= functionCache[cell].mtime)
return false;
return true;
};
// Define a function to process a cell
const processCell = async (cell, code) => {
const { language } = code;
let summary, shortened, rpcFunction, categories, category, amazing, fresh = false;
// Check if the cell is cached
if (needsCache(cell, code, functionCache[cell? cell : code.filename].mtime))
return { fresh, summary, shortened, categories, category, amazing, rpcFunction };
// Process the cell if it's not cached or has changed
try {
if (!summary)
summary = await askLlamaAboutCode(code.code);
if (!summary)
summary = await askLlamaToSummarize(summary);
categories = await askLlamaToGeneralize(summary);
if (!amazing)
amazing = await askLlamaToImplement(code.code, language);
if (typeof rpcFunction === 'undefined')
rpcFunction = await getRpcFunction(language, code.code);
} catch (e) {
rpcFunction = [];
}
fresh = true;
return { fresh, summary, shortened, categories, category, amazing, rpcFunction };
};
// Define a function to get the RPC function based on the language
const getRpcFunction = async (language, code) => {
switch (language) {
case 'javascript':
return await getExports(code);
case 'c':
case 'cpp':
return (await getParameters(code)).map(p => typeof p ==='string'? p : p[0]);
case 'python':
const params = await pythonParams(code);
return typeof params.function!== 'undefined'? [params.function] : params.map(p => p.function);
default:
return [];
}
};
// Define the main function to store all Llama functions
const storeAllLlamaFunctions = async () => {
for (let i = 0; i < cellCache.length; i++) {
const cell = cellCache[i];
const code = await cacheCells(cell[1]);
if (needsCache(cell, code, functionCache[cell? cell : code.filename].mtime)) {
storeLlamaFunction(cell[1], code.mtime, [], '', '', '', '', '');
continue;
}
const { fresh, summary, shortened, categories, category, amazing, rpcFunction } = await processCell(cell, code);
if (fresh)
storeLlamaFunction(cell[1], code.mtime, rpcFunction, summary, shortened, categories, category, amazing);
}
};
module.exports = { storeAllLlamaFunctions };Function Breakdown
This JavaScript code appears to be part of a larger system that interacts with a large language model (LLM) to perform various tasks related to code summarization and caching. Here's a breakdown of the functions and their purposes:
The code imports various functions from other modules using the importer.import() method. The imported functions are:
askLlamaAboutCodeaskLlamaToSummarize, askLlamaToGeneralize, askLlamaToImplementgetExports, cacheCellsfunctionCachestoreLlamaFunctionThe storeAllLlamaFunctions() function is the main entry point of the code. It:
getParameters and pythonParams.cellCache array.askLlamaToSummarize)askLlamaToImplement)askLlamaToGeneralize)functionCache object.fresh variable is set to true if the function cache for the current cell is not populated, indicating that the data needs to be fetched from the LLM.