llama | ask llm about functions | ask llm about notebooks | Search

The askLlamaAboutCode function takes a string of code, uses an LLM to provide a short breakdown, and logs the prompt and response. It limits input code to 2048 characters and trims the LLM response.

Run example

npm run import -- "ask llm about code"

ask llm about code



async function askLlamaAboutCode(code) {
  const {llmPrompt} = await importer.import("create llm session")

  const q2 = "Give me a short breakdown of this code:\n" + code.substr(0, 2048) + "\nDocumentation only, discard any friendly remarks.";
  console.log("User: " + q2);

  const a2 = await llmPrompt(q2);
  console.log("AI: " + a2);

  return a2.trim()
}

module.exports = {
  askLlamaAboutCode,
}

What the code could have been:

const { createLlmSession } = require('./importer');
const logger = console;

/**
 * Ask LLaMA about the provided code snippet.
 * 
 * @param {string} code - The code snippet to be analyzed.
 * @returns {Promise} A breakdown of the code snippet.
 */
async function askLlamaAboutCode(code) {
  // Create a new LLaMA session
  const llmSession = await createLlmSession();

  // Define the prompt with a maximum code length of 2048 characters
  const maxCodeLength = 2048;
  const prompt = `Give me a short breakdown of this code:\n${code.substring(0, maxCodeLength)}\nDocumentation only, discard any friendly remarks.`;

  // Log the user's query for debugging purposes
  logger.log('User:', prompt);

  // Ask LLaMA for a breakdown of the code
  const response = await llmSession.llmPrompt(prompt);

  // Log the AI's response for debugging purposes
  logger.log('AI:', response);

  // Return the AI's response with trailing whitespace removed
  return response.trim();
}

module.exports = {
  askLlamaAboutCode,
};

Code Breakdown

This code defines a function askLlamaAboutCode that takes a string of code as input and uses a language model (LLM) to provide a short breakdown of the code.

Function Flow

  1. Import LLM Session: The function imports an LLM session using the importer module.
  2. Prepare Prompt: It creates a prompt string q2 by concatenating a default prompt with the first 2048 characters of the input code.
  3. Log Prompt: The prompt is logged to the console with a "User:" label.
  4. Get LLM Response: The function sends the prompt to the LLM using the llmPrompt function and logs the response with an "AI:" label.
  5. Return Response: The response is trimmed and returned by the function.

Notes