The CIEDE2000 color difference calculation function is a C++ function that determines the color difference between two colors by converting their coordinates to a new chromaticity space and then calculating the deltaLPrime, deltaCPrime, and deltahPrime values. The function returns the CIEDE2000 color difference value based on these calculated values.
npm run import -- "ciede2000"
#include <math.h>
double deg2Rad(const double deg)
{
return (deg * (M_PI / 180.0));
}
// source: https://github.com/gfiumara/CIEDE2000/blob/master/CIEDE2000.cpp
double CIEDE2000(double l1, double a1, double b1, double l2, double a2, double b2)
{
/*
* "For these and all other numerical/graphical delta E00 values
* reported in this article, we set the parametric weighting factors
* to unity(i.e., k_L = k_C = k_H = 1.0)." (Page 27).
*/
const double k_L = 1.0, k_C = 1.0, k_H = 1.0;
const double deg360InRad = deg2Rad(360.0);
const double deg180InRad = deg2Rad(180.0);
const double pow25To7 = 6103515625.0; /* pow(25, 7) */
/*
* Step 1
*/
/* Equation 2 */
double C1 = sqrt((a1 * a1) + (b1 * b1));
double C2 = sqrt((a2 * a2) + (b2 * b2));
/* Equation 3 */
double barC = (C1 + C2) / 2.0;
/* Equation 4 */
double G = 0.5 * (1 - sqrt(pow(barC, 7) / (pow(barC, 7) + pow25To7)));
/* Equation 5 */
double a1Prime = (1.0 + G) * a1;
double a2Prime = (1.0 + G) * a2;
/* Equation 6 */
double CPrime1 = sqrt((a1Prime * a1Prime) + (b1 * b1));
double CPrime2 = sqrt((a2Prime * a2Prime) + (b2 * b2));
/* Equation 7 */
double hPrime1;
if (b1 == 0 && a1Prime == 0)
hPrime1 = 0.0;
else {
hPrime1 = atan2(b1, a1Prime);
/*
* This must be converted to a hue angle in degrees between 0
* and 360 by addition of 2 to negative hue angles.
*/
if (hPrime1 < 0)
hPrime1 += deg360InRad;
}
double hPrime2;
if (b2 == 0 && a2Prime == 0)
hPrime2 = 0.0;
else {
hPrime2 = atan2(b2, a2Prime);
/*
* This must be converted to a hue angle in degrees between 0
* and 360 by addition of 2 to negative hue angles.
*/
if (hPrime2 < 0)
hPrime2 += deg360InRad;
}
/*
* Step 2
*/
/* Equation 8 */
double deltaLPrime = l2 - l1;
/* Equation 9 */
double deltaCPrime = CPrime2 - CPrime1;
/* Equation 10 */
double deltahPrime;
double CPrimeProduct = CPrime1 * CPrime2;
if (CPrimeProduct == 0)
deltahPrime = 0;
else {
/* Avoid the fabs() call */
deltahPrime = hPrime2 - hPrime1;
if (deltahPrime < -deg180InRad)
deltahPrime += deg360InRad;
else if (deltahPrime > deg180InRad)
deltahPrime -= deg360InRad;
}
/* Equation 11 */
double deltaHPrime = 2.0 * sqrt(CPrimeProduct) *
sin(deltahPrime / 2.0);
/*
* Step 3
*/
/* Equation 12 */
double barLPrime = (l1 + l2) / 2.0;
/* Equation 13 */
double barCPrime = (CPrime1 + CPrime2) / 2.0;
/* Equation 14 */
double barhPrime, hPrimeSum = hPrime1 + hPrime2;
if (CPrime1 * CPrime2 == 0) {
barhPrime = hPrimeSum;
} else {
if (fabs(hPrime1 - hPrime2) <= deg180InRad)
barhPrime = hPrimeSum / 2.0;
else {
if (hPrimeSum < deg360InRad)
barhPrime = (hPrimeSum + deg360InRad) / 2.0;
else
barhPrime = (hPrimeSum - deg360InRad) / 2.0;
}
}
/* Equation 15 */
double T = 1.0 - (0.17 * cos(barhPrime - deg2Rad(30.0))) +
(0.24 * cos(2.0 * barhPrime)) +
(0.32 * cos((3.0 * barhPrime) + deg2Rad(6.0))) -
(0.20 * cos((4.0 * barhPrime) - deg2Rad(63.0)));
/* Equation 16 */
double deltaTheta = deg2Rad(30.0) *
exp(-pow((barhPrime - deg2Rad(275.0)) / deg2Rad(25.0), 2.0));
/* Equation 17 */
double R_C = 2.0 * sqrt(pow(barCPrime, 7.0) /
(pow(barCPrime, 7.0) + pow25To7));
/* Equation 18 */
double S_L = 1 + ((0.015 * pow(barLPrime - 50.0, 2.0)) /
sqrt(20 + pow(barLPrime - 50.0, 2.0)));
/* Equation 19 */
double S_C = 1 + (0.045 * barCPrime);
/* Equation 20 */
double S_H = 1 + (0.015 * barCPrime * T);
/* Equation 21 */
double R_T = (-sin(2.0 * deltaTheta)) * R_C;
/* Equation 22 */
double deltaE = sqrt(
pow(deltaLPrime / (k_L * S_L), 2.0) +
pow(deltaCPrime / (k_C * S_C), 2.0) +
pow(deltaHPrime / (k_H * S_H), 2.0) +
(R_T * (deltaCPrime / (k_C * S_C)) * (deltaHPrime / (k_H * S_H))));
return (deltaE);
}
#include
// Function to convert degrees to radians
static double deg2Rad(double deg) {
// Avoid the calculation when deg is 0
if (deg == 0.0) return 0.0;
return (deg * M_PI / 180.0);
}
// Function to calculate CIEDE2000 color difference
static double ciede2000(double l1, double a1, double b1, double l2, double a2, double b2) {
// Parametric weighting factors (default values)
const double k_L = 1.0;
const double k_C = 1.0;
const double k_H = 1.0;
// Precompute constants
const double deg360InRad = deg2Rad(360.0);
const double deg180InRad = deg2Rad(180.0);
const double pow25To7 = pow(25, 7);
// Step 1: Preprocess inputs
double C1 = sqrt(a1 * a1 + b1 * b1);
double C2 = sqrt(a2 * a2 + b2 * b2);
double barC = (C1 + C2) / 2.0;
// Step 1: Calculate G
double G = 0.5 * (1 - pow(barC, 7) / (pow(barC, 7) + pow25To7));
// Step 1: Transform inputs
double a1Prime = (1.0 + G) * a1;
double a2Prime = (1.0 + G) * a2;
double CPrime1 = sqrt(a1Prime * a1Prime + b1 * b1);
double CPrime2 = sqrt(a2Prime * a2Prime + b2 * b2);
// Step 1: Calculate hue angles (in radians)
double hPrime1;
if (b1 == 0 && a1Prime == 0) hPrime1 = 0.0;
else hPrime1 = atan2(b1, a1Prime);
if (hPrime1 < 0) hPrime1 += deg360InRad;
double hPrime2;
if (b2 == 0 && a2Prime == 0) hPrime2 = 0.0;
else hPrime2 = atan2(b2, a2Prime);
if (hPrime2 < 0) hPrime2 += deg360InRad;
// Step 2: Calculate delta values
double deltaLPrime = l2 - l1;
double deltaCPrime = CPrime2 - CPrime1;
double CPrimeProduct = CPrime1 * CPrime2;
double deltahPrime;
if (CPrimeProduct == 0) deltahPrime = 0;
else {
deltahPrime = hPrime2 - hPrime1;
if (deltahPrime < -deg180InRad) deltahPrime += deg360InRad;
else if (deltahPrime > deg180InRad) deltahPrime -= deg360InRad;
}
double deltaHPrime = 2.0 * sqrt(CPrimeProduct) * sin(deltahPrime / 2.0);
// Step 3: Calculate mean values
double barLPrime = (l1 + l2) / 2.0;
double barCPrime = (CPrime1 + CPrime2) / 2.0;
// Step 3: Calculate hue angle for mean value
double hPrimeSum = hPrime1 + hPrime2;
double barhPrime;
if (CPrime1 * CPrime2 == 0) barhPrime = hPrimeSum;
else {
if (fabs(hPrime1 - hPrime2) <= deg180InRad) barhPrime = hPrimeSum / 2.0;
else {
if (hPrimeSum < deg360InRad) barhPrime = (hPrimeSum + deg360InRad) / 2.0;
else barhPrime = (hPrimeSum - deg360InRad) / 2.0;
}
}
// Step 3: Calculate T and deltaTheta
double T = 1.0 - (0.17 * cos(barhPrime - deg2Rad(30.0))) +
(0.24 * cos(2.0 * barhPrime)) +
(0.32 * cos((3.0 * barhPrime) + deg2Rad(6.0))) -
(0.20 * cos((4.0 * barhPrime) - deg2Rad(63.0)));
double deltaTheta = deg2Rad(30.0) * exp(-pow((barhPrime - deg2Rad(275.0)) / deg2Rad(25.0), 2.0));
// Step 3: Calculate R_C, S_L, S_C, and S_H
double R_C = 2.0 * sqrt(pow(barCPrime, 7.0) / (pow(barCPrime, 7.0) + pow25To7));
double S_L = 1 + ((0.015 * pow(barLPrime - 50.0, 2.0)) / sqrt(20 + pow(barLPrime - 50.0, 2.0)));
double S_C = 1 + (0.045 * barCPrime);
double S_H = 1 + (0.015 * barCPrime * T);
// Step 3: Calculate R_T
double R_T = (-sin(2.0 * deltaTheta)) * R_C;
// Step 4: Calculate deltaE
double deltaE = sqrt(
pow(deltaLPrime / (k_L * S_L), 2.0) +
pow(deltaCPrime / (k_C * S_C), 2.0) +
pow(deltaHPrime / (k_H * S_H), 2.0) +
(R_T * (deltaCPrime / (k_C * S_C)) * (deltaHPrime / (k_H * S_H)))
);
return deltaE;
}
CIEDE2000 Color Difference Calculation Function
This is a C++ function that calculates the CIEDE2000 color difference between two colors. The function takes six input parameters:
l1
and l2
: The lightness values of the two colorsa1
and a2
: The a* values of the two colors (red-green axis)b1
and b2
: The b* values of the two colors (yellow-blue axis)Function Breakdown
The function can be divided into three main steps:
This step involves converting the input color coordinates to a new chromaticity space.
This step involves calculating the color difference between the two colors.
The function returns the CIEDE2000 color difference value, which is calculated using the deltaLPrime, deltaCPrime, and deltahPrime values.
Mathematical Functions Used
sqrt()
: Square root functionpow()
: Power functionatan2()
: Arctangent functionM_PI
: Constant representing piConstants Used
M_PI
: Constant representing pipow25To7
: Constant representing the result of pow(25, 7)