The code defines a class Euler within the Rosetta namespace, containing methods for calculating the product of common prime factors of numbers from 1 to 20, with several issues and room for optimization. The code can be improved by fixing the bugs in the PrimeFactors and Overlap methods, and using more efficient algorithms and data structures for prime factorization.
npm run import -- "rosetta euler csharp 005"using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
namespace Rosetta
{
public class Euler
{
public async Task<object> RunEuler(dynamic input)
{
return await Task.Run(() => new Euler().Calculate().ToString());
}
public static void Main(string[] args)
{
Console.WriteLine("{0}", new Euler().Calculate());
}
public ulong Calculate()
{
List<List<ulong>> primeFactorLists = new List<List<ulong>>();
for (ulong x = 1; x <= 20; x++)
{
primeFactorLists.Add(PrimeFactors(x));
}
List<ulong> factors = new List<ulong>();
for (int i = 0; i < 20; i++)
{
factors = Overlap(factors, primeFactorLists[i]);
}
return factors.Aggregate((product, factor) => product * factor);
}
public List<ulong> Overlap(List<ulong> a, List<ulong> b)
{
for (int i = 0; i < b.Count; i++)
{
a.Remove(b[i]);
}
a.AddRange(b);
return a;
}
public List<ulong> PrimeFactors(ulong n)
{
bool found = false;
ulong v = 2;
for (ulong i = 2; i < n - 1; i++)
{
if (n % i == 0)
{
found = true;
v = i;
break;
}
}
List<ulong> result = new List<ulong>();
if (found)
{
result.Add(v);
result = result.Concat(PrimeFactors(n / v)).ToList();
}
else
{
result.Add(n);
}
return result;
}
}
}
using System;
using System.Collections.Generic;
using System.Linq;
namespace Rosetta
{
public class Euler
{
private const ulong MaxValue = 20;
private const ulong MinValue = 1;
public async Task RunEuler(object input)
{
// Validate input
if (!(input is object[] || input is dynamic))
{
throw new ArgumentException("Input must be an object array or a dynamic object");
}
// Calculate Euler's result in a separate thread
return await Task.Run(() => Calculate());
}
public string Main()
{
return Calculate();
}
public ulong Calculate()
{
// Get prime factor lists for numbers from 1 to MaxValue
var primeFactorLists = GetPrimeFactorLists(MinValue, MaxValue);
// Find the overlapping prime factors
var overlappingFactors = primeFactorLists.Aggregate((a, b) => Overlap(a, b));
// Calculate the product of overlapping prime factors
return overlappingFactors.Aggregate((product, factor) => product * factor);
}
public List Overlap(List a, List b)
{
// Convert lists to sets for efficient overlap calculation
var setA = new HashSet(a);
var setB = new HashSet(b);
// Get the intersection of sets A and B
setA.IntersectWith(setB);
// Convert the intersection back to a list
return setA.ToList();
}
public List> GetPrimeFactorLists(ulong minValue, ulong maxValue)
{
// Create a list to store prime factor lists
var primeFactorLists = new List>();
// Get prime factor lists for numbers from minValue to maxValue
for (ulong x = minValue; x <= maxValue; x++)
{
primeFactorLists.Add(PrimeFactors(x));
}
return primeFactorLists;
}
public List PrimeFactors(ulong n)
{
// Get the minimum factor of n
var factor = GetMinimumFactor(n);
// Split n into two parts: n and n / factor
var result = new List() { factor };
result.AddRange(PrimeFactors(n / factor));
return result;
}
public ulong GetMinimumFactor(ulong n)
{
// Find the smallest factor of n greater than 1
for (ulong i = 2; i <= n / 2; i++)
{
if (n % i == 0)
{
return i;
}
}
return n;
}
}
}
The code uses the System namespace and defines a class Euler within a namespace Rosetta.
RunEulerCalculate method and returns its result as a string.MainCalculate method and prints its result to the console.CalculatePrimeFactors method to find prime factors of each number.Overlap method to find common prime factors.OverlapPrimeFactorsRunEuler method is unnecessary, as the Calculate method can be called directly.PrimeFactors method has a bug: it does not check if the input number is less than 2, which is a prime number.Overlap method has a bug: it removes elements from the first list while adding elements from the second list, resulting in incorrect output.